Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling.

نویسندگان

  • Christopher M Clark
  • David Tilman
چکیده

Plant species richness has declined and composition shifted in response to elevated atmospheric deposition of biologically active nitrogen over much of the industrialized world. Litter thickness, litter nitrogen (N) content, and soil N mineralization rates often remain elevated long after inputs cease, clouding the prospects that plant community diversity and composition would recover should N inputs be reduced. Here we determined how N cycling, litter accumulation, and recruitment limitation influenced community recovery following cessation of long-term N inputs to prairie-like grasslands. We alleviated each of these potential inhibitors through a two-year full-factorial experiment involving organic carbon addition, litter removal, and seed addition. Seed addition had the largest effect on increasing seedling and species numbers and may be necessary to overcome long-term burial of seeds of target perennial grassland species. Litter removal increased light availability and bare sites for colonization, though it had little effect on reducing the biomass of competing neighbors or altering extractable soil N. Nonetheless, these positive influences were enough to lead to small increases in species richness within one year. We found that, although C addition quickly altered many factors assumed favorable for the target community (decreased N availability and biomass of nearby competitors, increased light and site availability), these changes were insufficient to positively impact species richness or seedling numbers over the experimental duration. However, only carbon addition had species-specific effects on the existing plant community, suggesting that its apparent limited utility may be more a result of slow recovery under ambient recruitment rather than from a lack of a restorative effect. There were dramatic interactions among treatments, with the positive effects of litter removal largely negated by carbon addition, and the positive effects of seed addition generally amplified by litter removal. It remains unclear whether each mechanism explored here will induce community recovery, but over different temporal scales. Long-term monitoring will help resolve these remaining questions. Regardless, our results suggest that reversal of species loss and compositional shifts from N deposition in prairies may be more inhibited by habitat fragmentation, recruitment limitation, and long-term suppression of fire than from continued effects of elevated N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composi...

متن کامل

Comparison of Plant Litter Composition in Three Range Species and its Effects on Soil Fertility (Case Study: North Eastern Islamabad Rangeland, Kermanshah Province, Iran)

Plant litter is an important factor for soil conservation and sustainability that could modify soil chemical properties and increase the plant biomass production. The aim of this research was to compare plant litter chemical composition and its effects on soil properties in three species including Hordeum bulbosum, Poa bulbosa, Bromus tectorum. First, soil samples were taken in the depth of 0-3...

متن کامل

Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling

Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast Chi...

متن کامل

Interactive effects of plant species diversity and elevated CO2 on soil biota and nutrient cycling.

Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more a...

متن کامل

Soil Nitrogen Cycling under Elevated CO2: A Synthesis of Forest Face Experiments Author(s):

The extent to which greater net primary productivity (NPP) will be sustained as the atmospheric CO2 concentration increases will depend, in part, on the long-term supply of N for plant growth. Over a two-year period, we used common field and laboratory methods to quantify microbial N, gross N mineralization, microbial N immobilization, and specific microbial N immobilization in three free-air C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 91 12  شماره 

صفحات  -

تاریخ انتشار 2010